organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

D. Gayathri,^a S. Kalyani,^a D. Velmurugan,^a* K. Ravikumar^b and M. Poornachandran^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.047 wR factor = 0.136 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

7-Phenylcyclooctane-1-spiro-6'-2-thiapyrrolizidine-5'-spiro-3"-indole-2,2"(3H)-dione

In the title compound, $C_{26}H_{28}N_2O_2S$, the pyrrolidine ring adopts a twisted conformation and the thiazolidine ring is in an envelope conformation. The eight-membered ring adopts a twist-boat-chair conformation. The molecular structure is stabilized by a weak $C-H\cdots O$ interaction and the crystal packing is stabilized by intermolecular $N-H\cdots O$ interactions, generating a centrosymmetric dimer with an $R_2^2(8)$ motif.

Comment

Pyrrolidine has gained much attention in the pharmacological industry for its high medicinal value. Pyrrolidine compounds have antifungal and antimicrobial activity (Amal Raj *et al.*, 2003). The spiro ring system is frequently encountered in many pharmacologically relevant alkaloids. Synthetic spiropyrrolidine derivatives have activity against the aldose reductase enzyme which controls influenza (Stylianakis *et al.*, 2003). Owing to the high medicinal importance of spiropyrrolidine derivatives, we have undertaken the X-ray crystal structure determination of the title compound, (I).

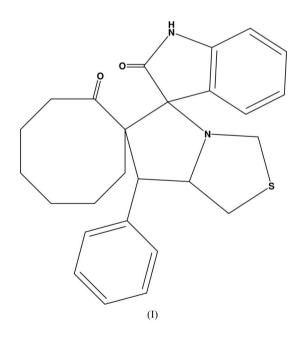
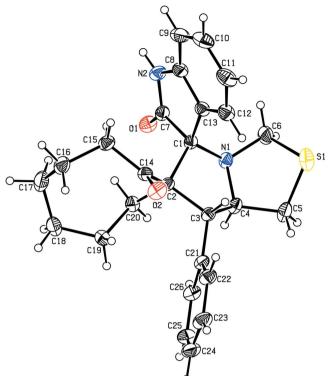
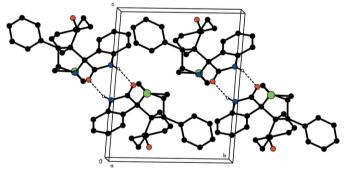


Fig. 1 shows the molecular structure of compound (I). Bond lengths and angles are comparable with reported values (Allen *et al.*, 1987), except for the bonds at the spiro junctions (Table 1). The sum of the bond angles around atom N1 (341.1°) indicates sp^3 hybridization. The five-membered ring of the oxindole system is planar and atom O1 deviates from this plane by 0.101 (2) Å. The dihedral angle between the fiveand six-membered rings in the oxindole system is 4.6 (1)°.


© 2007 International Union of Crystallography All rights reserved Received 11 January 2007 Accepted 14 January 2007

4878 independent reflections

 $R_{\rm int} = 0.016$


 $\theta_{\rm max} = 28.0^{\circ}$

4378 reflections with $I > 2\sigma(I)$

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids.

Figure 2

The packing of (I), viewed approximately down the *a* axis. For the sake of clarity, H atoms not involved in hydrogen bonds (dashed lines) have been omitted.

The pyrrolidine ring adopts a twisted conformation, with a pseudo-twofold axis passing through atom N1 and the midpoint of the C2-C3 bond. The thiazolidine ring adopts an envelope conformation, with atom S1 deviating 0.802 (1) Å from the least-squares plane passing through the remaining four atoms of that ring. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the pyrrolidine ring are $q_2 =$ 0.424 (1) Å, $\varphi = 82.9 (2)^{\circ}$ and $\Delta_2(N_1) = 8.0 (2)$, respectively, and those for the thiazolidine ring are $q_2 = 0.466$ (2) Å, $\varphi =$ 358.8 (2)° and $\Delta_s(S_1) = 2.6$ (1), respectively. The eightmembered ring adopts a twist-boat-chair conformation.

A weak $C-H \cdots O$ interaction is observed in the molecular structure. The crystal packing is stabilized by N2-H2···O1(-x, -y, 1-z) intermolecular interactions (Table 2),

Experimental

A mixture of isatin (1.2 mmol), thiazolidine-4-carboxylic acid (1.2 mmol) and benzylidene cyclooctanone (1 mmol) in methanol (20 ml) was refluxed until the disappearance of the starting materials, as shown by thin-layer chromatography. The solvent was then evaporated in vacuo and the residue was chromatographed on a column (silica gel, 100-200 mesh) eluted with a hexane-ethyl acetate (9:1 v/v) mixture to obtain the title compound, which was recrystallized from a solution in methanol.

Crystal data

$C_{26}H_{28}N_2O_2S$	$V = 1071.99 (12) \text{ Å}^3$
$M_r = 432.56$	Z = 2
Triclinic, P1	$D_x = 1.340 \text{ Mg m}^{-3}$
a = 9.0901 (6) Å	Mo $K\alpha$ radiation
b = 10.5013 (7) Å	$\mu = 0.18 \text{ mm}^{-1}$
c = 12.7508 (8) Å	T = 293 (2) K
$\alpha = 79.865 \ (1)^{\circ}$	Block, colourless
$\beta = 71.504 \ (1)^{\circ}$	$0.26 \times 0.25 \times 0.22 \ \mathrm{mm}$
$\gamma = 68.568 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer (i) scans Absorption correction: none 12269 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.08P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.047$ wR(F²) = 0.136 + 0.2495P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ S = 1.07 $\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$ 4878 reflections $\Delta \rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3}$ 280 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

C1-N1	1.470 (2)	C3-C4	1.529 (2)
C1-C13	1.531 (2)	C4-N1	1.469 (2)
C1-C7	1.564 (2)	C4-C5	1.531 (2)
C1-C2	1.591 (2)	C5-S1	1.801 (2)
C2-C14	1.538 (2)	C6-N1	1.445 (2)
C2-C20	1.545 (2)	C6-S1	1.835 (2)
C2-C3	1.560 (2)	C7-O1	1.217 (2)
C3-C21	1.517 (2)	C14-O2	1.208 (2)
C6-N1-C4	111.7 (1)	C7-N2-C8	112.0 (1)
C6-N1-C1	118.1 (1)	C5-S1-C6	87.6 (1)
C4-N1-C1	111.3 (1)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdotsO1^{i}$ $C20-H20B\cdotsO1$	0.86	2.06	2.879 (2)	160
	0.97	2.42	3.017 (2)	119

Symmetry code: (i) -x, -y, -z + 1.

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with N-H = 0.86 Å and C-H = 0.93–0.98 Å, and $U_{\rm iso}({\rm H}) = 1.2 \ U_{\rm eq}({\rm C,N}).$

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PARST* (Nardelli, 1995).

DG thanks the CSIR, India, for the award of a Senior Research Fellowship, and DV thanks the DST, India, for a Major Research Project. DV acknowledges financial support from the UGC (SAP), and the Department of Science and Technology (DST-FIST), Government of India, for providing facilities to the department.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). *Bioorg. Med. Chem. Lett.* 13, 1699–1703.